Master Deep Learning
1. Neural Network Fundamentals
Understand how artificial neurons work and build your first neural network from scratch.
# Simple neural network with TensorFlow
import tensorflow as tf
model = tf.keras.Sequential([
tf.keras.layers.Dense(128, activation='relu', input_shape=(784,)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
2. Convolutional Neural Networks (CNNs)
Learn to process images and build computer vision models.
# CNN for image classification
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
3. Recurrent Neural Networks (RNNs)
Process sequential data with LSTM and GRU networks.
# LSTM for sequence prediction
model = tf.keras.Sequential([
tf.keras.layers.LSTM(50, return_sequences=True, input_shape=(timesteps, features)),
tf.keras.layers.LSTM(50),
tf.keras.layers.Dense(1)
])
4. Transfer Learning
Leverage pre-trained models for faster development.
# Transfer learning with pre-trained model
base_model = tf.keras.applications.VGG16(
weights='imagenet',
include_top=False,
input_shape=(224, 224, 3)
)
base_model.trainable = False
model = tf.keras.Sequential([
base_model,
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(num_classes, activation='softmax')
])